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ABSTRACT: In biological tissues, cell-to-cell variations stem from the stochastic and
modulated expression of genes and the varying abundances of corresponding proteins. These
variations are then propagated to downstream metabolite products and result in cellular
heterogeneity. Mass spectrometry imaging (MSI) is a promising tool to simultaneously
provide spatial distributions for hundreds of biomolecules without the need for labels or
stains. Technological advances in MSI instrumentation for the direct analysis of tissue-
embedded single cells are dominated by improvements in sensitivity, sample pretreatment,
and increased spatial resolution but are limited by low throughput. Herein, we introduce a
bimodal microscopy imaging system combined with fiber-based laser ablation electrospray
ionization (f-LAESI) MSI with improved throughput ambient analysis of tissue-embedded
single cells (n > 1000) to provide insight into cellular heterogeneity. Based on automated
image analysis, accurate single-cell sampling is achieved by f-LAESI leading to the discovery
of cellular phenotypes characterized by differing metabolite levels.

1. INTRODUCTION

Biological tissues are composed of complex cellular networks
and unique cell types with specialized functions. These cells
exhibit varied expression levels of transcripts, proteins, and
metabolites resulting in cellular heterogeneity. To capture cell-
to-cell variations, ultimately a multiomics approach is required
to provide insight into biochemical composition at the cellular
level.1 Similarly, crucial is the spatial mapping of the single-cell
profile of these biomolecules in tissues to provide insight into
the spatial aspects of cellular heterogeneity.2,3 A grand
challenge in single-cell analysis is the limited cell volume
especially for analytes with low concentrations.4 This has been
resolved in single-cell genomics and transcriptomics by
utilizing nucleic acid amplification to improve analyte
detection, and these methods are becoming mainstream.5

Established high-throughput techniques are dominated by
single-cell RNA sequencing (scRNA-Seq) aided by flow
cytometry and microfluidic devices.6−8

However, single-cell proteomics and metabolomics are not
as well established and heavily rely on high sensitivity and
selectivity approaches to detect, identify, and quantitate these
species. Mass spectrometry (MS) has been used extensively for
small-molecule profiling from single cells using a wide array of
techniques, including capillary microsampling MS with ion
mobility separation (IMS), single-probe MS, capillary electro-
phoresis MS, and optical fiber-based laser ablation electrospray
ionization (LAESI).9−12 However, a significant drawback to
these methods is the lack of high throughput that makes it
difficult to reach representative sampling for statistical analysis.

Mass spectrometry imaging (MSI) has been used for single-
cell analysis to spatially map biomolecules within tissues and
cell cultures at the single-cell level.13,14 The most widely used
MSI techniques for single-cell imaging are matrix-assisted laser
desorption/ionization (MALDI) and secondary ion mass
spectrometry (SIMS) with lateral resolutions capable of <10
and <1 μm, respectively.15−18 High-throughput single-cell
methods based on MALDI-MSI are emerging to collect
enough data that represent a population for statistically
meaningful conclusions.19−21 However, both MALDI and
SIMS require extensive sample preparation and a vacuum
environment for the analysis.
Ambient ionization sources can sample the native state of

biological tissues and single cells with minimal sample
preparation.22,23 A wide array of ambient ionization MS
sources has been adapted for the direct analysis of tissue-
embedded single cells, including optical fiber-based LAESI (f-
LAESI), single-probe MS, and nanodesorption electrospray
ionization (nano-DESI), improving the spatial resolution for
the latter to <10 μm.24−27

Despite the significant advances in MSI to achieve spatial
resolutions commensurate with cell sizes, the rectangular grid
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sampling pattern applied in most MALDI imaging experiments
remains an impediment to obtaining true single-cell
information from a tissue. As in natural tissues, the cells are
not following an equidistant grid pattern, the resulting
mismatch between the cell and sampling positions results in
occasional cosampling of two or more adjacent cells. To
overcome this limitation, we demonstrated cell-by-cell
molecular imaging of tissues by f-LAESI-MSI.28 In this
approach, cell centroids were determined from a brightfield
image of the tissue and their coordinates were used in the
definition of sampling positions. As a result, each voxel in the
chemical image corresponded to a single cell. As the optical
microscope and the mass spectrometer were not integrated,
this system was not capable of high-throughput operation. It
also lacked fluorescence imaging, thereby further limiting its
application.
Fluorescent labels are often used to identify a subpopulation

of cells distinguished by a cellular state, the presence of a
receptor or a biomarker. Combining cell selection by
fluorescence microscopy and single-cell analysis of the selected
set give insight into the chemical composition of predefined
subpopulations.9,12 Cell morphology is commonly observed by
brightfield microscopy. Automatic recognition of cells in
brightfield images is a common segmentation task.29 Addi-
tional information can be extracted by morphometric analysis
of the recognized cells in combination with fluorescence, e.g.,
fluorescence in situ hybridization (FISH), and chemical
composition, e.g., nano-SIMS.30−32 Several ambient ionization
methods have been utilized in microscopy-guided analysis of

targeted regions directly in tissue sections.33−35 Morphometric
data, collected from brightfield and fluorescence images, e.g.,
cell centroid positions, enables the automation of sequential f-
LAESI-MS analysis of tissue-embedded single cells.
Here, we introduce a bimodal imaging system based on

simultaneous brightfield and fluorescence imaging combined
with f-LAESI-MS for microscopy-guided high-throughput
single-cell analysis. Automated image segmentation, morph-
ometry, and metabolic analysis of >1000 tissue-embedded cells
reveal the presence of latent subpopulations distinguished by
suppressed and upregulated levels of certain metabolites.

2. EXPERIMENTAL SECTION

2.1. Optical Microscopy. A dual-channel microscope
capable of simultaneous brightfield and fluorescence imaging
was built to study biological tissues in situ (see Figure 1). A
microscope body (CEA1600, Thorlabs, Newton, NJ) held all
of the imaging components and the laser optical train. To
reduce environmental vibrations, the system was mounted on a
passive isolation table. To accommodate all 1 in. optical
components and for easy modification, a 30 mm cage system
was used to steer the laser beam, fiber coupling, and mounting
optics. Attached to the microscope body was an epi-
illumination arm in a dovetail configuration in which three
illumination kinematic cage cubes were installed in parallel. In
the current configuration, the incorporated optical components
were for green fluorescent protein (GFP) and brightfield
microscopy. The GFP-fluorescence excitation was produced by
a 470 nm blue LED light source (M470L3, Thorlabs, Newton,

Figure 1. (a) Schematic of home-built bimodal imaging and single-cell sampling f-LAESI ion source. Simultaneous brightfield and fluorescence
imaging of the tissue provides information on cell morphology and the presence of a fluorescent tag, respectively. Recognizing cells as objects in the
image leads to the determination of centroid coordinates (xi, yi). Sampling is achieved by focusing the mid-IR laser beam through an etched optical
fiber tip into a cell for ablation. The XY translation stage presents all n identified centroids consecutively to the fiber tip. (b) Brightfield image of
epidermal cells in Allium cepa bulb. (c) Centroid positions (xi, yi) for n = 20 cells are marked by blue dots and the ablation sequence is shown by
yellow arrows. (d) Postablation image confirms sampling of all selected cells. (e) Molecular distributions based on ion abundances for malate,
glutamate, and alliin represented on false-color scales.
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NJ), which passed through a 469 nm excitation filter (MF469-
35, Thorlabs, Newton, NJ) and a dichroic mirror (MD498,
Thorlabs, Newton, NJ) that reflected light at 415−470 nm and
transmitted light at 490−720 nm. The brightfield light source
was a cold white LED source (MCWHL5, Thorlabs, Newton,
NJ). The produced light was collimated and passed through a
beam splitter (BSS10R, Thorlabs, Newton, NJ) coated for
400−700 nm that reflected 30% and transmitted 70% of the
intensity. All of the wavelengths were focused onto the tissue
sample using either a 5×, 10×, or 20× magnification long
working distance objective (MY20X-804, Thorlabs, Newton,
NJ). A 1× magnification tube lens (WFA4100, Thorlabs,
Newton, NJ) projected the images on CCD sensors. Two
monochromatic 4 megapixel scientific-grade CCD cameras
(4070M-GE, Thorlabs, Newton, NJ) were mounted orthogo-
nally to each other onto a two-camera mount (2SCM1-DC,
Thorlabs, Newton, NJ). The kinematic cage cube (2SCM1-
DC, Thorlabs, Newton, NJ) that split the two channels
contained a dichroic mirror (MD498, Thorlabs, Newton, NJ)
that transmitted 505−800 nm and reflected 452−490 nm light.
In the optical path of the fluorescence channel, an emission
filter (MF525-39, Thorlabs, Newton, NJ) with a wavelength
maximum of 525 nm was installed before the CCD detector.
The light transmitted through the dichroic mirror was used for
the brightfield channel and required no further filters. To
reduce stray light and artifacts in the images, the whole optical
path was enclosed from the CCDs to a few inches above the
sample.
2.2. Fiber LAESI-MS. A tunable mid-IR laser source (IR

Opolette HE 2731, Opotek, Carlsbad, CA) emitting light at
2.94 μm wavelength with a 7 ns laser pulse length and 20 Hz
repetition rate was used for fiber ablation experiments. The
laser beam was steered using gold-coated mirrors and coupled
into the home-built microscope. To produce laser pulses with
∼1.0 ± 0.17 mJ energy, the beam passed through an external
attenuator. It was focused through a 50 mm focal length plano-
convex CaF2 lens into the blunt distal end of the optical fiber.
For precise coupling, the focusing lens and fiber chuck were
attached to a fiber mount tilt stage (F-91TS, Newport, Irvine,
CA).
A 1 m long germanium oxide optical fiber with a 250 μm

core diameter (HP Fiber, Infrared Fiber Systems, Inc., Silver
Spring, MD) was used to deliver laser pulses from the laser
coupling mount to the sample. Both ends of the fiber were
stripped of the Hytrel and polyimide coatings using a heated 1-
methyl-2-pyrrolidinone solution. The coupling end was
cleaved, while the ablation end was etched in 4% nitric acid
solution to produce a sharp tip with an R = ∼5 μm radius of
curvature, resulting in a 10 μm tip diameter. This end was
secured in a bare fiber chuck and mounted onto a
micromanipulator (MN-151, Narishige, Tokyo, Japan) with
an automated translation stage along the Z-axis. More details
regarding fiber etching and coupling can be found in our earlier
work.12,24

The etched fiber tip was brought sufficiently close to the
sample surface to induce the ablation of single cells by the laser
pulses. The ablation plume was intercepted by a stable
electrospray from a spay solution of 2:1 (v/v) MeOH/CHCl3
at a flow rate of 500 nL/min. To produce negative ions
through the LAESI mechanism, a spray voltage of −2.7 kV was
applied.12 The generated ions were analyzed by a quadrupole
time-of-flight mass spectrometer (Synapt G2S, Waters,
Milford, MA).

2.3. Integrated Imaging and Sampling Software. The
acquisition and analysis of images, as well as cell recognition
and automated sampling, were controlled by MetaMorph
software (Meta Series Software 7.10.2) working with a
compatible sample stage, illumination controllers, and cameras.
Initially, the voxel to micrometer calibration was defined for all
magnifications and stored. Using the journal feature within the
software, separate journals were created for both acquisition
channels (brightfield and fluorescence). Each journal triggered
the corresponding illumination shutter and camera acquisition
channel for the manually selected magnification in use.
Triggering the channels individually reduced the overexposure
in fluorescence mode. The two images were projected on the
CCDs within 50 ms of each other using the twin camera/split-
view simultaneous acquisition option. To control the
illumination, LED control drivers were placed in triggering
mode and connected to a TTL/Analog device (DDA02, Cairn
Research, Faversham, U.K.). The journal also controlled the
XY-axis sample translation stage (MLS203, Thorlabs, Newton,
NJ) and the Z-axis stage (MMP Series one, Mad City Labs,
Madison, WI) for lowering and lifting the sample. A stage
journal was created that centered the desired sampling point,
i.e., the selected single cell, to the middle of the field of view
(FOV) under the sharpened optical fiber tip. Then, the sample
was lifted for ablation by the laser pulse delivered through the
fiber tip.
The ablation event was initiated using the TTL/Analog

trigger input of the Q-switch for the mid-IR laser using a digital
delay generator (DG535, Stanford Research Systems,
Sunnyvale, CA), whereas the flashlamp was triggered
internally. A loop was created in the journal to define an
ablation event for each cell that also set the delays between
laser shots. Setting the delays to 50 ms resulted in an event that
consisted of 10 laser shots over an ∼1 s period for the ablation
of each cell. The ablation events were monitored using an
oscilloscope. The schematic of the instrument is shown in
Figure 1a.
The fiber tip was manually adjusted in the XYZ, yaw, and

pitch directions using a five-axis translator (F-91TS, Newport,
Irvine, CA) to the center of the FOV using a journal that
created a region of interest (ROI) in the live image. Once in
position, the fiber tip was defined as a fixed point for cell-by-
cell sampling.

2.4. Sample Preparation. Organic purple onion (A. cepa)
bulbs were obtained from a local store. The top two layers
were removed, and all tissues were obtained from the third
layer. Using a scalpel, a small section of this layer was cut and
separated. Tweezers were used to remove an intact layer of the
inner epidermal tissue from the concave surface that consisted
of a monolayer of cells. This tissue was placed on a precut 25 ×
25 mm2 microscope slide and mounted onto a Peltier cooling
stage. Maintaining a low sample temperature minimized
metabolic changes during the analysis.
Soybean seeds were inoculated with Bradyrhizobium

japonicum (USDA110) and were grown under greenhouse
conditions for 21 days. Intact root nodules were harvested and
flash frozen. For sample preparation, the nodules were
embedded in 2.5% carboxymethyl cellulose (CMC) medium
and cryosectioned to 30 μm thickness to produce a cellular
quasi-monolayer of the tissue. The section was thaw mounted
onto a precut microscope slide for analysis.

2.5. High-Resolution Imaging of Whole Tissue. As
high-resolution images clearly show that the cells produced
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only a small FOV, to image the whole tissue multiple FOV
segments had to be captured and stitched together. This was
achieved by the Scan Slide MetaMorph application journal that
produced a high-resolution image of the entire tissue in both
the brightfield and fluorescence channels. Before acquiring
each FOV image, a 500 ms delay was set to ensure the stage
was stabilized. The whole tissue area had to be defined by
fiduciary markers at the upper left and lower right corners.
Once all high-resolution FOV images of the tissue were
obtained, image overlaps of 10% were used for alignment and
stitching. This raw image then underwent image processing for
cell recognition and morphometry.
2.6. Image Processing for Cell-by-Cell Imaging. Once

a raw fluorescence image was acquired, it underwent
background subtraction to enhance contrast, highlight the
cells, and remove artifacts. To isolate and define individual cell
boundaries, image segmentation was applied. The approximate
minimum and maximum cell sizes (e.g., 20 and 70 μm,
respectively, for infected root nodule cells) were defined,
sorted based on cell area in the image and color-coded. The
segmented image was binarized to capture individual cells and
morphometric analysis was performed. The objects were
filtered using area, length, and shape factor and recognized as
individual cells with (xi, yi) centroid coordinates determined by
the software. Cell volumes were calculated by multiplying the
areas of the cells in the image measured by morphometry with
an estimated thickness of 100 μm for the cellular monolayer.
2.7. Automated Sampling for Cell-by-Cell Imaging.

The list of (xi, yi) cell centroid coordinates in the image had to
be linked with the corresponding stage positions. After the
conversion factors were established, a journal drove the sample
stage to consecutively position each cell at the center of the
FOV, where the optical fiber tip was positioned slightly above
the tissue surface. At each position, the sample stage was lifted
in the Z direction until the selected cell was in close proximity
to the fiber tip. Ten laser shots were delivered that caused the
cell to ablate. Ablating a relatively constant volume of cell
content, independent of cell volume, is a prerequisite for the
relative quantitation of metabolite abundances between cells.
In other words, analyzing an, e.g., ∼2 nL sample of cell
content, irrespective of cell volume, assured that cellular
metabolite concentrations, not their absolute amounts,
determined relative signal intensities between cells. In addition,
ion intensities for each cell are normalized to the sum of
sample-related ion intensities to obtain relative intensities less
dependent on the sampling process. As the ablation plume
intercepted the electrospray, a single-cell spectrum was
captured by the mass spectrometer. After the ablation event,
the stage was lowered to the original Z position and moved to
the next cell. The mean ion abundance values are not meant to
be correlated with the cellular concentrations of the related
metabolite because different chemical species can have very
different ionization efficiencies, resulting in different ion
intensities. Rather, ion intensities for a particular metabolite
are compared for different cells. In addition, the definition of
metabolic noise reveals that it is a relative metric that
eliminates all linear distortions of ion intensities because it
only depends on intensity ratios not on the intensities
themselves.
2.8. Statistical Analysis, Dimensionality Reduction,

and Data Visualization. Several of the detected ions were of
low abundance and the signal occasionally fell below the limit

of detection. Thus, a left-censored missing not at random
(MNAR) imputation method was applied for missing values.36

To explore cellular heterogeneity, abundance distributions
after MNAR imputation were plotted in the form of
histograms. Unimodal distributions were modeled by normal
and lognormal probability density functions, whereas bimodal
distributions were fitted by their linear combinations.
High-dimensional analysis of single-cell MS data was

performed using uniform manifold approximation and
projection (UMAP) for dimension reduction. UMAP is a
nonlinear dimensionality-reduction method that has been
found efficient in preserving local structures in the original
high-dimensional single-cell data.37 Preserving such local
structures in a lower-dimensional representation (e.g., in
two-dimensional (2D)) can reveal distinct cell populations.
The high-dimensional spectra were projected into a two-
dimensional space where similar spectra were projected close
to each other, whereas dissimilar ones were projected further
apart.

3. RESULTS
3.1. Image Analysis. Simultaneous brightfield and

fluorescence microscope imaging combined with f-LAESI-MS
(see Figure 1a) yields a multidimensional data set composed of
morphometric parameters, e.g., cell centroid coordinates (xi,
yi) and cell-specific mass spectra ((m/z)i,j, Ii,j), where i
enumerates the cells and index j corresponds to spectral
features. The high-resolution images with cellular resolution
reveal phenotypic differences between the cells based on
location and morphology and identify their infection status
based on the fluorescence signal. For example, brightfield
images of a soybean (Glycine max) root nodule section
revealed several cell phenotypes localized at the outer cortex
and inner infection zone (see Figure 5e). Simultaneous
fluorescence imaging of the same tissue revealed the cells
that were infected by GFP-tagged rhizobia (Figure 5a).
Determining the metabolic composition of these cell types
can provide insight into the pathways active in biological
nitrogen fixation without spectral interference from adjacent
uninfected cells or cells of different phenotypes.
To achieve single-cell analysis, the diameter of the sampling

spot had to be smaller than a cell. Coupling the laser beam into
an optical fiber with the sampling tip etched to a diameter of
∼10 μm provided ∼10 μm ablation spot size that conferred
sufficient resolution for single-cell sampling. For automated
cell-by-cell analysis, the (xi, yi) centroid coordinates of targeted
phenotypes were obtained through image processing (Figure
1b,c).28 This started with identifying the cells in the tissue
section as objects, selecting the targeted subset, and
determining their centroid coordinates (xi, yi).

3.2. High-Throughput Sampling. Cells of the A. cepa
(onion) bulb epidermis are used as a model system because
they are largely uniform in shape and size. Once cell centroid
positions (xi, yi) for cell i are determined in the microscope
image, they are converted into a list of coordinates for the
automated XY translation stage. The tip of the optical fiber is
in a fixed position at the center of the FOV, and the sample
stage moves through the coordinate list to position the cells
one by one under it for ablation. For each cell, an ((m/z)i,j, Ii,j)
mass spectrum is obtained (see, e.g., Figure 2a) and registered
with the (xi, yi) coordinates. To link a cell from the image to
the corresponding mass spectrum, an ion chromatogram is
recorded linking the cell ablation events through time to the
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cell coordinates. For example, tracking a cell-related ion, e.g.,
malate, reveals the exact time of each ablation event (Figure
2b). Following the ablation, an image is captured to document
that the correct cell was selected and no neighboring cells were
affected (Figure 1d). Based on these data, each cell can be
viewed as a voxel with (xi, yi) in a molecular image
corresponding to the (m/z)i,j ion, where the Ii,j abundance is
represented on a false-color scale (Figure 1e). This automated
process results in a sampling rate of ∼2 cells/min. For example,
from an A. cepa epidermal monolayer, ∼120 single cells are
sampled in 1 h. To improve the statistical power of our data
set, 1084 single cells were analyzed in ∼17.5 h.
In addition to cell-by-cell imaging to explore spatial

distributions, the collected data can also be used to explore
cellular heterogeneity. For example, looking at the malate
abundance distribution over this cell population, cell-to-cell
variations with a lognormal distribution are observed, as it is
explained in the next section.
3.3. Single-Cell Spectra. Using the f-LAESI-MS platform,

primary and secondary metabolites are tentatively identified in
single cells. In a typical negative ion mode spectrum, over 100
spectral features are detected, including the strong signals from
disaccharides, trisaccharides, tetrasaccharides, and pentasac-
charides in the higher mass region (Figure 2a). Various small
metabolites are tentatively identified including oxalate,

ascorbate, malate, and alliin, a defense compound known to
be present in onion. Identifications relied on accurate mass
measurements and an extensive tandem MS data set from
similar samples.24

3.4. Cellular Heterogeneity and Metabolic Noise. To
characterize cellular heterogeneity, abundance distributions
and metabolic noise are investigated for 35 metabolites from a
population of n = 1084 cells. The stochastic nature of enzyme
copy numbers in single cells and random environmental factors
modulate reaction fluxes and lead to metabolite concentration
variations. This randomness over a cell population is captured
by metabolic noise, ηm

2. Histograms of metabolite abundances
can be modeled by lognormal or bimodal distributions. For
example, glutamate and alliin both exhibit a lognormal
distribution (Figure 3a,b), whereas a bimodal distribution is
observed for disaccharides. The latter is a convolution of a
lognormal and a normal component, representing two hidden
subpopulations (Figure 3c). Numerous other metabolites
follow a lognormal or bimodal pattern (see Supplementary
Figures 1−5).
Determination of the measured noise does not require

finding an underlying statistical model, as it is expressed as η2 =
σ2/μ2, where μ is the mean and σ is the standard deviation of
the abundance distribution. The technical noise for f-LAESI
was found to be ηt

2 = 0.02 and ηt
2 = 0.03 for glutamate and

glucarate standards, respectively.12,38 This is significantly lower
than the measured noise, η2, for all of the studied metabolites.
This technical noise, however, does not account for the
variations in the sampled volume. A qualitative argument could
be made to support the assumption of relatively low variations
in the ablated sample volume. As the laser pulse energy
exhibited <5% RSD variations, and the water concentration in
the cells was relatively uniform, delivering similar amounts of
energy is expected to result in similar sampled volumes. Thus,
the metabolic noise is obtained by a minor correction: ηm

2 = η2

− ηt
2 (Supplementary Table 1). For the 35 featured

metabolites, the ηm
2 falls between 0.20 ≤ ηm

2 ≤ 2.76.
Primary metabolites exhibited both low (ηm

2 ≤ 0.50) and
high (ηm

2 > 0.50) metabolic noise. For example, ascorbic acid
(ηm

2 = 0.36), oxalate (ηm
2 = 0.40), and pyruvate (ηm

2 = 0.54)
are among the metabolites with lower noise, whereas
glutathione (ηm

2 = 0.89), gluconic acid (ηm
2 = 2.09), and

gallic acid (ηm
2 = 2.44) exhibit much higher noise.

To explore if the mean abundance of a metabolite ion
affected the metabolic noise, the latter was plotted against the
mean values and the data showed a weak negative correlation
(see Figure 3d). It is important to emphasize that we do not
compare ion intensities between different metabolites or to
metabolite concentrations in the tissue. The abundance
histograms in Figure 3 reflect the distributions of ion
intensities for a particular metabolite originating from different
cells. As mentioned above, in metabolic noise values, all linear
distortions of ion intensities are eliminated because they only
depended on intensity ratios (intensity in a cell over the
intensity average for all cells) not on the intensities themselves.
Morphometric analysis of the images provided cell volume

values for each analyzed cell. This can be used to explore a
correlation between the cell volume and metabolite abundance
distributions. Cell volumes for the entire population (n =
1084) exhibited a lognormal distribution with a median of 4.5
nL and a range of 1.4−10.0 nL (Figure 4c).
Pearson, ρP, and Spearman, ρS, correlation coefficients were

calculated between cell volumes and 28 metabolite ion

Figure 2. (a) Representative mass spectrum of a single A. cepa
epidermal cell by f-LAESI. A total of 108 spectral features were
detected. (b) Ion chromatogram of malate in 1084 single A. cepa
epidermal cells captured by high-throughput f-LAESI-MS. Each peak
corresponds to the malate abundance in an individual cell. Cellular
heterogeneity is reflected by a wide range of intensities.
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intensities to characterize the strength of potential linear and
nonlinear relationships, respectively. None or very weak
correlations were observed for the studied ions with the cell
volume. Specifically, for di-, tri-, and pentasaccharide ion
intensities very weak negative correlations of ρP = −0.27,
−0.32, and −0.24 were observed, respectively. All other
correlations between volumes and ion abundances were even
weaker, i.e., practically nonexistent, exhibiting −0.14 < ρP <
0.10 (Supplementary Table 2). This can be rationalized by

recognizing that the ablation process does not consume the
entire cell content, especially in the case of midsize (4−7 nL)
and large (7−10 nL) cells. Postablation observation of the cells
by microscopy confirmed this point, i.e., part of the cell
content in these cases remained in the confines of the
remaining cell walls. As the volume sampled by 10 laser shots is
smaller than most of the cell volumes determined by
morphometry, there is no significant correlation expected
between metabolite abundances and the cell volume.

Figure 3. Metabolite abundance distributions for A. cepa epidermal cells (n = 1084) of (a) glutamate, (b) alliin, and (c) disaccharide. Distributions
followed either a lognormal or bimodal normal curve. (d) Metabolic noise as a function of mean relative intensity from 1084 single A. cepa cells
shows a slightly negative Pearson’s correlation with ρP = −0.64.

Figure 4. (a) Abundance distribution of disaccharides for a cell population of n = 1084 exhibits a bimodal distribution. (b) Abundance distributions
for selected cell volume ranges: 1−4 nL (n = 377), 4−7 nL (n = 649), and 7−10 nL (n = 58) were investigated within the disaccharide distribution.
(c) Lognormal cell volume distribution was observed for the analyzed 1084 single A. cepa cells.
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Conversely, ablating a relatively constant volume of the cell
content, independent of cell volume, is a prerequisite for
relative quantitation.
Dissecting the bimodal disaccharide abundance distribution

reveals that cells with low (1−4 nL) volumes only contribute
to the normal distribution (Figure 4a,b). In contrast, the
midsize and large cells in the 4−7 and 7−10 nL volume range,
respectively, contribute to both the lognormal and normal
components of the bimodal distribution (Figure 4b). Thus,
single-cell analysis combined with morphometry reveals two
subpopulations of cells distinguished by their disaccharide
abundance and volume. Small cells constitute a subpopulation
with elevated disaccharide content, whereas among larger cells,
two phenotypes exist, one with low and one with elevated
disaccharide abundance.
There is indirect evidence in the literature for the lack of cell

volume dependence of disaccharide abundances. Following the
average cell sizes in onion epidermis as a function of scale
number, it was found that for a mature spherical bulb, between
scales 6th (outer) and 11th (inner), the average length and
diameter of cells dropped by factors of ∼2.5 and ∼2.6,
respectively.39 This corresponded to a cell volume reduction
by a factor of ∼17 in a span of five scales. In an earlier f-LAESI-
MS study of epidermal cells from five consecutive scales, we
found no significant difference between disaccharide signal
intensities as a function of scale number.24

Calculating correlation coefficients between 378 possible
mixed pairs of the 28 ions revealed only a few significant
correlations with ρP > 0.70 or ρS > 0.70. Pearson correlation
calculations indicated for fumarate and malate, ρP = 0.79,
citrate and gallic acid, ρP = 0.71, pentose and oxalate, ρP =
0.73, pentose and arabinonate, ρP = 0.76, pentose and hexose,
ρP = 0.83, glutathione and hexose phosphate, ρP = 0.83, UDP-
hexose and hexose phosphate, ρP = 0.79, and UDP-hexose and

glutathione, ρP = 0.81 (Supplementary Table 2). In these
analyses, hexose stands for glucose and fructose, and pentose
includes ribose, arabinose, and xylulose.
Low correlation for many of the metabolite pairs is not

surprising because of the complexity of metabolic pathways.
Most metabolites are precursors for multiple reaction products,
and at the same time, products in multiple reactions. Changes
in their concentrations are determined by multiple upstream
precursors and multiple downstream reaction products, i.e.,
they are branching nodes of the network. Thus, there is no
strong correlation between the precursor and product
concentrations of any single reaction.

3.5. Dimensionality Reduction and Data Visualiza-
tion. The 1084 single-cell spectra with ∼100 spectral features
each constitutes a high-dimensional data set. To assess the
major features in the data, dimensionality reduction is
performed based on UMAP analysis. The lower-dimensional
representation of this data set is shown in Supplementary
Figure 6a. It reveals the presence of a distinct spectral feature
that corresponds to a batch-effect (highlighted by yellow)
characterized by the presence of the m/z 202.970 peak
originating from perfluorobutanoic acid, a known electrospray
contaminant. The spectra are further analyzed by UMAP for
three metabolites, glutamate, alliin, and disaccharides, to
visualize their heterogeneity (Supplementary Figure 6b−d).
The bimodal nature of the disaccharide distribution is
represented by color differences, whereas glutamate and alliin
show no separation among the cells.

3.6. Selective Targeting of Specific Cell Types.
Targeting cell types can be important for the analysis of rare
cells or when the cell type of interest is intimately interspersed
with other cell types. A well-known example of this is the
infection zone of root nodules in legumes. Here, cells infected
by nitrogen-fixing rhizobia are distributed among uninfected

Figure 5. Selective sampling of specific cell types by f-LAESI. Fluorescence imaging of a 30 μm thick cross-section of a root nodule reveals only
cells infected with nitrogen-fixing bacteria. Images show (a) before and (b) after the ablation of a single infected cell and the corresponding (c)
mass spectrum. The corresponding brightfield images display both infected and uninfected cell types and reveal the uninfected cell clusters. Images
show (d) before and (e) after the ablation of a small cell cluster of uninfected cells (n = 10 cells) with the (f) corresponding mass spectrum.
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cells on a very fine scale. To demonstrate selective targeting of
a specific cell type, frozen root nodules from 21 day old
soybean plants, infected by GFP-labeled rhizobia, are
sectioned. Brightfield and fluorescence images are captured,
to identify the infected cells based on their fluorescence and
the uninfected cells based on their smaller size and the lack of
fluorescence. Figure 5d shows the brightfield image of a root
nodule cross section depicting all of the cell types present. The
corresponding fluorescence image (Figure 5a) highlights only
the infected cells. This enables the selective targeting of
infected cells and uninfected cell clusters. Analysis of a single
infected cell is demonstrated by comparing before (Figure 5a)
and after ablation (Figure 5b) images and capturing the
corresponding mass spectrum (Figure 5e). Due to the small
size of the uninfected cells, a cluster of them (n = 10) is ablated
(Figure 5d,e) and analyzed (Figure 5f).
The mass spectra of the two cell types are compared (Figure

5c,f) and multiple metabolites, including malate, disaccharides,
glutamate, and citrate, are identified in both. The most
prominent difference is in the lipid region where membrane
lipids are significantly more abundant in the infected cells.
Phosphatidic acid (PA) species, including PA (16:0/18:2), and
PA (18:2/18:2), phosphatidylglycerol (PG) species, including
PG (16:1/18:2), and PG (16:0/18:1), and phosphatidylino-
sitol (PI) species, including PI (16:0/18:2), are observed. The
presence of these lipids in root nodules has been established by
f-LAESI-MS of single infected cells on a 21T-FTICR
instrument with ultrahigh mass accuracy.38

Randomly selected cells of the same type from different
parts of the tissue can be analyzed automatically and with high
throughput. To demonstrate this, a G. max root nodule section
is scanned using the fluorescence channel to reveal only
infected cells (Figure 6a). Image processing is performed to
define cell borders, remove image artifacts, and define the cells
of interest, and an image mask is created (Figure 6b−e).

Spurious objects were rejected by intensity thresholding and/
or by excluding objects that were too large or too small to be
cells. Once the cells are recognized as objects, the (xi, yi)
centroid coordinates for each cell are stored for f-LAESI
sampling. Processing the image in Figure 6a results in the
identification of 936 infected root nodule cells. From this pool,
25 cells are randomly selected for analysis. Abundances of
several metabolites, including malate, glutamate, disaccharide,
and jasmonic acid, are spatially mapped onto the 25 selected
cells (Figure 6f−i).

4. DISCUSSION
High-throughput single-cell analysis methods to capture
metabolic heterogeneity are available; however, they are
applicable mainly for free-floating cells and report on the
abundances of a few metabolites. Fluorescence microscopy
enables the selection of specific subpopulations for single-cell
analysis without interference from other cell types. For
example, fluorescence microscopy was used to guide capillary
microsampling for electrospray ionization IMS-MS of individ-
ual HepG2/C3A cells in specific mitotic stages.9 Due to
manual control of capillary microsampling, this type of analysis
is extremely labor-intensive and low throughput. Typically,
only a few cells are analyzed in 1 h. Much higher throughput
can be achieved by studying isolated cell populations using
object recognition in fluorescence microscopy followed by
MALDI-MS of a selected subpopulation.19 A promising
technique, laser microdissection/liquid vortex capture/MS,
was automated to recognize cell location in whole tissues and
free-floating cells by optical microscopy and image processing.
A sampling rate of 100 algae cells/h was achieved, and algal cell
types were differentiated based on lipid signatures.21 In our
automated f-LAESI workflow, the fluorescence channel
provided the ability to sample particular phenotypes, and to
perform analysis with comparable 120 cells/h throughput.

Figure 6. Workflow for selective targeting of infected soybean root nodule cells for analysis. (a) High-resolution fluorescence image was obtained
by image stitching. (b) Image segmentation was applied to the raw image to provide cell border separation and grouping based on color. (c) Cell
centroid locations were determined, and (d) 25 cells were selected to be sampled using the automated system. (e) Image mask was created for
false-color spatial mapping of (f−i) several metabolites.
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Due to the large number of analyzed cells (n > 1000) and
the >100 mass spectral features for each of them, an advanced
multivariate statistical approach is needed. Dimensionality
reduction has been fundamental for the visualization of high-
dimensional data with nonlinearities.40 As UMAP is a
nonlinear dimensionality-reduction method, it preserves both
local and global data structures needed to identify distinct cell
populations.37 Additionally, this platform can accommodate
millions of data points; thus, it is applicable for high-
throughput large-scale experiments. Displaying spectral in-
tensities of metabolites on a false-color scale in UMAP can
provide insight into the presence of subpopulations. For
example, when looking at the histogram plots of glutamate and
alliin, both exhibit a lognormal distribution (Figure 3a,b).
However, the disaccharide distribution consists of a lognormal
and normal component, indicating the presence of two
subpopulations (Figure 3c). This can also be observed through
the wide color gradient in the UMAP representation
(Supplementary Figure 6d).
Elevated Pearson correlation coefficients indicated tracking

in the abundances of eight metabolite ion pairs. Some of these
pairs were found close to each other on specific metabolic
pathways. Fumarate and malate (ρP = 0.79) are directly
interconverted in the tricarboxylic acid (TCA) cycle by
fumarate hydratase [EC:4.2.1.2]; thus, their strong correlation
can be rationalized. However, in-source fragmentation can also
contribute to this correlation, as the loss of water from the
malate ion produces fumarate.41 The correlation between
pentose and arabinonate (ρP = 0.76) can be attributed to the
two-step interconversion between arabinose and arabinonate
through arabonolactone, catalyzed by arabinonolactonase
[EC:3.1.1.15] and arabinose dehydrogenases [EC:1.1.1.46]
and [EC:1.1.1.376]. There is evidence in the literature for a
multistep link between a pentose (arabinose) and oxalate (ρP =
0.73). In B. japonicum, formation of oxalate was linked to the
degradation of arabinose.42 Hexose phosphate and glutathione
(ρP = 0.83) are linked through NADPH produced by the
pentose phosphate pathway and used in the reduction of
oxidized glutathione by glutathione reductase [EC:1.8.1.7].
The pentose phosphate pathway also connects pentoses with
hexoses potentially explaining the observed strong correlation
in our single-cell data (ρP = 0.83).
The correlation between UDP-hexose and hexose phosphate

(ρP = 0.79) probably corresponds to the UDP-glucose−
glucose phosphate pair involved in starch and sucrose
metabolism, where glucose phosphate is a direct hydrolysis
product of UDP-glucose. Starch and sucrose metabolism is a
primary pathway in A. cepa bulb swelling.43 Correlations
between UDP-hexose and hexose phosphate in combination
with the correlations of hexose phosphate and glutathione also
mean that UDP-hexose and glutathione are corelated (ρP =
0.81). Finally, the origin of the correlation between the single-
cell abundances of citrate and gallic acid (ρP = 0.71) is unclear.
Most laser-based MSI methods analyze tissue voxels

arranged on a rectangular grid. Even at the high spatial
resolution, analysis of tissue-embedded single cells is hard to
achieve due to the occasional cosampling of two or more cells
within an imaging voxel. This results in scrambled spectra.
With the automated f-LAESI system, as long as the cells are
larger than the fiber tip diameter, the mass spectrum for each
voxel is from a single cell, as laser sampling occurs at cell
centroids as opposed to locations defined by fixed increments
on a rectangular grid.

The feasibility of f-LAESI for MSI is tested on rhizobia
infected soybean root nodule cells randomly selected from an
entire nodule cross section (Figure 6). Three-dimensional
molecular tomography of such nodules has been performed by
MALDI-MSI at a step size of 50 μm. According to that study,
several metabolites exhibit asymmetrical molecular distribu-
tions throughout the infection zone, where infected and
uninfected cells are interspersed.44 Although useful data were
obtained, the lack of single-cell resolution resulted in
potentially co-measuring the metabolite compositions of
infected and uninfected cells. In contrast, using automated f-
LAESI-MSI, the metabolite composition of single infected cells
is captured.
Looking at cell-to-cell variations in our experiment,

glutamate (ηm
2 = 0.44) showed greater noise levels than

malate (ηm
2 = 0.12), jasmonic acid (ηm

2 = 0.16), and
disaccharide (ηm

2 = 0.10). In previous studies using f-LAESI-
IMS-MS and f-LAESI 21T-FTICR on infected cells in G. max
root nodules, very similar metabolic noise, ηm

2 = 0.08, was
observed for disaccharides at n = 60 and n = 124 cell numbers,
respectively.12,38 Metabolic noise measured by f-LAESI-IMS-
MS at n = 60 for glutamate, ηm

2 = 0.27, and malate, ηm
2 = 0.22

are similar to the values found in this study.12 Glutamate,
malate, and jasmonic acid were not observed using the f-LAESI
21T-FTICR system due to the low mass cutoff in data
acquisition.
In all three studies, the cell numbers for G. max have been

small to marginal to accurately establish the shape of
abundance distribution functions. To assess the number of
cells needed to capture these distributions, the n = 1084 data
set is randomly downsampled to n = 1000, 600, 400, 200, 100,
and 50 cells. Fumarate abundances at n = 1084 exhibit a
bimodal distribution with a lognormal and a normal
component (see Supplementary Figure 2). Using reduced
sample sizes, histograms are created for fumarate abundances
and fitted with the same bimodal model (see Supplementary
Figure 7). As the number of cells is reduced from n = 1000 to n
= 600, 400, 200, 100, and 50 cells, the fit deteriorates as it is
reflected in reduced coefficients of determination, r2 = 0.96,
0.95, 0.87, 0.78, 0.79, and 0.44, respectively. It appears that the
minimum required cell number to capture the shape of the
bimodal fumarate distribution is n > 200. In the case of simpler
unimodal distributions, somewhat lower cell numbers, e.g., n >
100, might be sufficient. In general, the number of cells needed
depend on the number and relative size of the subpopulations
present.

5. CONCLUSIONS
Automated analysis of n > 1000 tissue-embedded single cells is
demonstrated under ambient conditions using f-LAESI-MS to
explore cell-to-cell variations of metabolite abundances.
Detecting bimodal abundance distributions leads to the
identification of cellular subpopulations with low and high
metabolite levels. Improving the throughput of single-cell
metabolomics puts it on more even footing with single-cell
transcriptomics and proteomics and prepares the ground for
the systemic analysis of individual cells through multiomics.
Combining this data with morphometry can uncover
correlations between cellular composition and morphological
phenotypes. Selectively analyzing cells tagged by affinity-based
or genetically encoded fluorescent probes using f-LAESI-MS
can reveal the relationship between functional phenotypes and
cellular metabolism. Object recognition in optical microscopy
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can be used to establish single-cell voxels for cell-by-cell MSI
experiments. Resolving difficulties presented by significantly
smaller mammalian cell sizes, primarily by improving detection
sensitivity, will open the door to the analysis of single
mammalian cells in a tissue environment by f-LAESI-MS.
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Figures:

Supplementary Figure 1. Metabolite abundance and UMAP distributions from A. cepa 
epidermal cells (n = 1084) of aconitic acid, alliospiroside C, arabinonate, ascorbic acid, 
citrate, and dihydroxy dimethoxyflavone.
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Supplementary Figure 2. Metabolite abundance and UMAP distributions from A. cepa 
epidermal cells (n = 1084) of UDP-hexose, flavanone, fumarate, gallic acid, glucarate, 
and gluconic acid.
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Supplementary Figure 3. Metabolite abundance and UMAP distributions from A. cepa 
epidermal cells (n = 1084) of glutathione, hexasaccharides, hexose, hexose phosphate, 
homoglutathione, and malate.
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Supplementary Figure 4. Metabolite abundance and UMAP distributions from A. cepa 
epidermal cells (n = 1084) of oxalate, pentasaccharides, pentose, proline, pyruvate, and 
tetrasaccharide.
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Supplementary Figure 5. Metabolite abundance and UMAP distributions from A. cepa 
epidermal cells (n = 1084) of trihydroxy pentamethoxyflavone, trisaccharide, and 
UDP-pentose.



S8

Supplementary Figure 6. a Visualization of 1084 A. cepa single cell data using UMAP. 
The yellow-colored group of cells were clustered based on a batch effect. b-d Metabolite 
intensity of glutamate, alliin, and disaccharide are overlaid on the UMAP using false 
color scale, revealing distinct cell populations.
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Supplementary Figure 7. Assessment of cell numbers needed to accurately capture 
fumarate abundance distribution in cell population. Dataset collected for n = 1084 cells 
is randomly downsampled to n = 1000, 600, 400, 200, 100, and 50 cells. Using the 
reduced sample sizes, six histograms are created for the fumarate abundances and 
fitted retaining the bimodal model established for the complete dataset (see 
Supplementary Figure 2). As the number of cells is reduced, the fit deteriorates 
reflected in reduced coefficients of determination, r2 = 0.96, 0.95, 0.87, 0.78, 0.79, and 
0.44, respectively.



Supplementary Table 1. Metabolites annotated from single epidermal A. cepa cells with corresponding metabolic noise, ηm
2, and w/w 

concentration, cw/w.

Compound Formula Adduct m/zmeas
∆m 

(mDa) μ σ ηm
2 = η2 - ηt

2 cw/w
(mg/100g)

cave
(mM)

oxalate C2H2O4 [M-H]- 88.991 3.0 0.58 0.38 0.40 1.0a, 4.03b, 
11.3c 0.60

fumarate C4H2O4 [M-H]- 115.003 -1.2 3.85 2.82 0.51 0.63b, 0.24c 0.04
malate C4H6O5 [M-H]- 133.010 -4.2 13.46 9.58 0.48 43.6c 3.25
glutamate C5H9NO4 [M-H]- 146.042 -3.9 0.09 0.11 1.47 325c, 258d 19.82
pentose C5H10O5 [M+Cl]- 149.040 -5.6 0.19 0.15 0.60
arabinonate C5H10O6 [M+Cl]- 165.042 2.1 0.26 0.17 0.40
aconitic acid C6H6O6 [M-H]- 173.001 -8.2 0.19 0.15 0.60

ascorbic acid C6H8O6 [M-H]- 175.025 0.3 0.37 0.23 0.36 6.69b, 
3.75c, 7.4d 0.34

alliin C6H11NO3S [M-H]- 176.038 -0.4 4.76 3.00 0.37
[M-H]- 179.0611 5.0hexose C6H12O6 [M+Cl]- 215.026 -6.8

8.02 6.48 0.63 1790d 99.41

citrate C6H8O7 [M-H]- 191.026 5.9 0.11 0.12 1.17 33.9b, 48.5c 2.15
gluconic acid C6H12O7 [M-H]- 195.044 -7.0 0.11 0.16 2.09
glucarate  C6H10O8 [M-H]- 209.039 8.7 0.20 0.15 0.54
flavanone  C15H12O2 [M-H]- 223.076 -0.5 0.17 0.21 1.50
hexose phosphate C6H13O9P [M-H]- 259.021 -1.4 0.24 0.22 0.82
glutathione C10H17N3O6S [M-H]- 306.0758 -0.7 0.24 0.23 0.89
homoglutathione C11H19N3O6S [M-H]- 320.097 4.8 0.07 0.07 0.98

[M-H]- 341.109 0.5
[M+H2O-H]- 359.113 -5.6disaccharide C12H22O11

[M+Cl]- 377.085 -0.8
23.91 11.22 0.20 2520b, 

990d 51.30

trihydroxy 
pentamethoxyflavone C20H20O10 [M-H]- 419.102 3.6 0.20 0.20 0.98

[M-H]- 503.157 -4.8
[M-+H2O-H]- 521.171 -0.7trisaccharide C18H32O16

[M+Cl]- 539.136 -2.4
8.62 5.78 0.42 1640b 32.53

UDP-pentose C14H22N2O16P2 [M-H]- 535.035 -1.6 0.10 0.09 0.79
UDP-hexose C15H24N2O17P2 [M-H]- 565.044 -3.2 0.15 0.15 0.98
tetrasaccharide C24H42O21 [M-H]- 665.212 -2.6 8.62 5.78 0.42 1640b 19.66
pentasaccharide C30H52O26 [M+Cl]- 845.268 -9.4 0.91 0.81 0.77 1640b 10.04
hexasaccharide C36H62O31 [M+Cl]- 1025.288 -8.3 0.10 0.11 1.19
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Dihydroxy 
dimethoxyflavone C17H14O6 [M-H]- 313.078 6.2 0.50 0.55 1.19

gallic acid C7H6O5 [M-H]- 169.012 -2.2 0.07 0.11 2.44 0.41a 0.02

proline C5H9NO2 [M-H]- 114.048 -8.1 3.85 2.82 0.51 14.05a, 
12.0d 1.13

pyruvate C3H4O3 [M-H]- 87.0025 -5.5 0.08 0.06 0.54 103.4a 11.75
alliospiroside C C38H60O13 [M-H]- 723.403 7.2 0.08 0.11 1.87 49.1a 0.68

a Duke, James. 'Dr. Duke's Phytochemical and Ethnobotanical Databases. United States Department of Agriculture, Agricultural 
Research Service.
b Longvah, T., Ananthan, R., Bhaskar, K. & Venkaiah, K. Indian food Composition Tables.  (2017).
c Galdon BR, Rodriguez CT, Rodriguez ER, Romero CD (2008) Organic acid contents in onion cultivars (Allium cepa L.). Journal of 
Agricultural and Food Chemistry 56 (15)
d U.S. Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for Standard Reference, Release 
24. Nutrient Data Laboratory Home Page. 2011 http://www.ars.usda.gov/ba/bhnrc/ndl.

http://www.ars.usda.gov/ba/bhnrc/ndl
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Supplementary Table 2. Pearson correlation coefficients, P, between cell volumes and 28 metabolite ion abundances.


